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Experiments on the flow past a circular cylinder 
at low Reynolds numbers 

By D. J. TRITTON 
Cavendish Laboratory, Cambridge 

(Received 25 February 1959) 

Part I describes measurements of the drag on circular cylinders, made by ob- 
serving the bending of quartz fibres, in a stream with the Reynolds number 
range 0.5-100. Comparisons are made with other experimental values (which 
cover only the upper part of this range) and with the various theoretical cal- 
culations. 

Part I1 advances experimental evidence for there being a transition in the 
mode of the vortex street in the wake of a cylinder at a Reynolds number around 
90. Investigations of the nature of this transition and the differences between 
the flows on either side of it are described. The interpretation that the change is 
between a vortex street originating in the wake and one originating in the im- 
mediate vicinity of the cylinder is suggested. 

Introduction 
This paper is concerned with two-dimensional flow past a circular cylinder. 

The Reynolds number, R, is defined throughout on the diameter of the cylinder 
and the velocity, U ,  far from it. Directions are referred to in terms of the 
Cartesian co-ordinates, x, y and z,  which are respectively in the direction of flow 
far from the cylinder, perpendicular to both this and the cylinder, and parallel 
to the cylinder. 

It is well known that as R is increased from low values for which approximate 
solutions of the Navier-Stokes equations can be found, a complex sequence of 
events takes place. At a Reynolds number estimated at 3-2 by Nisi & Porter 
(1923), 5 by Taneda (1956), and 6 by Homann (1936), the flow separates from the 
cylinder before reaching the rear generator and a pair of attached eddies forms 
behind the cylinder. 

The Reynolds number of the first appearance of a vortex street behind the 
cylinder is also rather variably estimated. It is common to take it as 40, though 
Taneda (1956), puts it as low as 30. It is often supposed (e.g. Goldstein 1938, 
5 183) that the street is produced by the attached eddies stretching farther and 
farther downstream, becoming distorted, and then being shed alternately from 
the sides of the cylinder. However, an inspection of the flow (as photographed 
for instance by Homann (1936)) suggests that at Reynolds numbers only a little 
above 40 the street develops out of an instability in the wake. The wind-tunnel 
experiments of Kovasznay (1949) lend support to this view. Further the work 
of Hollingdale (1940) and Taneda (1958) on the wake of a flat plate st zero 
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incidence has shown conclusively that a vortex street can develop independently 
of attached eddies. 

According to Roshko (1954), the mode of flow first appearing at R N 40 
continues until R N 150 when the motion of the vortices becomes less regular 
and turbulence is produced downstream. 

Part I of this paper describes experiments that give values for the drag on a 
cylinder in the range 0.5 < R < 100-a range of some interest in view of the 
sequence of changes that occurs within it. Part I1 gives experimental evidence 
for there being a further change a t  R N 90, and suggests a qualitative explanation 
of this. 

P A R T  I. THE DRAG O N  CIRCULAR C Y L I N D E R S  FOR 0.5 < R < 100 

The approximate solutions of the Navier-Stokes equations give theoretical 
values for the drag coefficient when the Reynolds number is rather less than 1. 
The previous lowest R at which an experimental value was obtained was 4.22 
and good agreement between different experimental investigations did not 
begin until about R = 20. It has been, however, common practice to interpolate 
values in the intermediate range. The range is too long for this to be accurate 
and the interpolation would seem particularly subject to error in view of the 
fact that the first appearance of attached eddies occurs within it. Hence, when 
I was doing some experiments that provided some information on the drag 
coefficient in this low R region, it seemed worthwhile extending them to fill in 
this gap in the R-C, curve. 

The experiments concerned were a series of calibrations of quartz-fibre 
anemometers for measuring the low air speeds of free convective flows. This 
instrument was developed by Schmidt (1934) (see also, Schmidt & Beckmann 
(1930)), but has not previously been used as an absolute measure. An advantage 
of so using it is that it enables the measurements to be extended to speeds lower 
than those available for calibration. 

In  the author’s arrangement of the instrument the quartz-fibre is cemented 
into the end of a piece of hypodermic tubing. The free end of the fibre is viewed 
through a tele-microscope with an eyepiece scale previously calibrated against 
a stage graticule. The objective has a working distance of about 4 cm, which is 
large enough for the tele-microscope not to affect the flow round the fibre. 

If simple bending moment theory is supposed to apply, the deflexion of the 
end of the fibre produced by a force F per unit length normal to its axis is 

8 ~ 1 4  h = - -  
nEd4’ 

where 1, d, and E are the length, diameter and Young’s modulus of the fibre. 
If F is taken as the drag produced by a stream of air with velocity U flowing past 
an infinite circular cylinder, then the drag coefficient, defined as 
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( p  is the density of air), is given by 
nEd3h c, = ~- 
4p u214 * 

There are a number of requirements on the quantities involved for this result 
to be useful. (i) Simple bending moment theory must apply. It was calculated 
that, for errors to be less than 1 %, this requires 1/h > 15. (ii) The cylinder must 
be long enough for it to be regarded as effectively infinite. The smallest value of 
lld for the author’s fibres was 150; judging by the results of Wieselsberger (1922) 
for finite cylinders this is perhaps not really large enough, but the results obtained 
with this fibre could be fitted in with those from fibres of much larger lld. (iii) h 
must be an order of magnitude larger than d or it is not accurately measurable. 

All these conditions could be satisfied with a set of fibres with diameters in 
the range 20-1OOp and lengths in the range 1-3cm, which then fulfils the 
dual purpose of determining C, in the range 0-5 < R < 100 (some overlap with 
the already established range was thought desirable as a check on the accuracy 
of the technique) and measuring air velocities down to 10 cmlsec. 

Of the quantities that are needed for calculating R and C, from observed 
values of U and h, the fibre diameter ia the most difficult to measure and this is 
the limiting factor on the accuracy of the experiments. The diameters of the 
larger fibres were measured with a travelling microscope. For the smaller ones 
this was not sufficiently accurate and a wedge fringe optical interference method 
with reflected sodium light was used instead. It was also found necessary to 
measure the Young’s modulus for each fibre diameter. This was done by deter- 
mining the resonant frequencies of a mounted fibre. This work has already been 
described elsewhere (Tritton 1959) as it indicated that the modulus varies with 
diameter. In  terms on the nth resonant frequency, v,, the Young’s modulus is 

where ps is the density of fused quartz and $* is the nth root of 

COB$ cash$ = - 1 

(Tritton 1959). Hence, C, = 

The diameter dependence is thus reduced from third order to first, giving a 
fortunate increase in accuracy. 

The resonance measurements also indicated rather better than the diameter 
measurements when the fibre was not truly circular; in this case each resonance 
became a doublet. Departures from circular cross-sections (calculated assuming 
elliptical ones) were in the worst cases around 3 yo and usually rather less than 
this. 

The measurements of the deflexions produced by the air flow were carried out 
in one of the Cavendish Laboratory’s wind-tunnels. This is fitted with a mano- 
meter that measures speeds down to 250 cm sec-l. The tunnel will, however, run 
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Drag 
Reynolds coefficient 

& 
Absolute 

measurements 

no., R C D  

Fibre and method of 
velocity measurement 

Fibre 1 
I = 1-70cm; d = 0.00194cm; 
vn/& = 16.2 sec-1. 
Eddy frequency with 50 < R < 150 

Fibre 2 
I = 1.27 cm; d = 0.00197 cm; 
vn/& = 29.45sec-l. 
Combination of heat-pulse tracing 

and eddy frequency with 
50 < R c 150 

Fibre 3 
I = 3.12cm; d = 0.00442cm; 

Combination of heat-pulse tracing 
vn/@ = 10.07 sec-l. 

and eddy frequency with 
5 0 c R c  150 

Fibre 6* 
1 = 2.07 cm; d = 0.00753 cm; 

Manometer (calibrated by heat- 
v,l& = 36.4sec-1. 

pulse tracing and by Pitot tube 
+ Chattock manometer) 

Pressure and 
temperature 

765mm Hg, 
20.8OC 

752 mm Hg, 
20.3" C 

760 mm Hg, 
19.1" c 

744 mm Hg, 
20.6" C 

769 mm Hg, 
22.2" c 

768 mm Hg, 
16.5" C 

Velocity, 
U Deflexion, 

(cm sec-l) 

31.9 
38-2 
39-7 
41.15 
44.5 
48.7 
50.7 
56.85 
60.5 
63.4 
64.95 
30.2 

49.2 
54.3 
73.3 
87.8 
97.2 
99.5 

112.7 
129.6 

36.7 
44.4 
50.4 
58.3 
55.8 
67.8 
69.35 
76.4 
81-36 
91.2 

103.6 
109.8 
119.2 

297 
335 
429 
454 
530 
553 
586 
660 
738 
808 

h (cm) 

o-oaia 
0.0501 
0.0566 
0.0577 
0-0643 
0.0721 
0.0765 
0.0883 
0.0961 
0.1036 
0.1063 
0.0375 

0.0226 
0.0254 
0-0356 
0.0460 
0.0630 
0.0544 
0.0646 
0.0788 

0.0362 
0.0462 
0.0554 
0.0668 
0.0626 
0-0666 
0.0868 
0.0982 
0.1070 
0.1248 
0.1485 
0.1628 
0.1817 

0.0224 
0.0292 
0.0466 
0.0446 
0.0596 
0.0686 
0-0732 
0.0896 
0-1068 
0.1218 

0.416 
0.494 
0.518 
0.532 
0.576 
0.634 
0.661 
0.741 
0.783 
0.820 
0.845 
0.387 

0.660 
0.719 
0.968 
1.16 
1.29 
1.32 
1-50 
1.72 

1.06 
1-28 
1-45 
1.68 
1.64 
1.70 
2.04 
2.25 
2-40 
2.69 
3.05 
3-24 
3.51 

15.3 
17.3 
22.1 
23.4 
27.4 
28.5 
30.2 
34.0 
38.1 
41.7 

18.6 
15.8 
16-2 
15.7 
15.0 
14.0 
13-7 
12.6 
12.1 
11.9 
11-6 
19.2 

14.8 
13.6 
10.5 
9.49 
8.85 
8-69 
8.05 
7.41 

11.7 
10.2 
9.07 
8.13 
8.19 
8-13 
7-26 
6.86 
6.66 
6.11 
5.64 
5.50 
5-20 

2.20 
2.25 
2.20 
1.87 
1.83 
1.94 
1.85 
1.78 
1.69 
1.62 

* Fibre 6 showed slight hysteresis, giving rather more scatter than other fibres. 

TABLE 1 
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Fibre and method of 
velocity measurement 

Fibre 7 
I = 1.12cm; d = 0.00745cm; 

Manometer 
E = 6.96 x loll dyne 

Fibre 8 

Z = 2.11cm; d = 0.01125cm; 
E = 5-95 x 1011dynecm-2 

Manometer 

Drag 
Reynolds coefficient 

no., R C D  
Velocity, & 

Pressure and U Deflexion. 
temperature (cm sec-l) h (om) 

Absolute 
measurements 

769mmHg, 620 
18.0" c 759 

918 
967 

1042 
1194 
1221 
1275 

771mmHg, 587 
18.2'C 597 

730 
836 
844 
900 
990 

1016 
1082 
1182 
1237 
1272 
1377 
1442 
1508 

Fibre 4 
1 = 2.28 cm; d- 0.0047 cm. 
Eddy frequency with 60 < R < 150 

751 mm Hg, 
16.8" C 

747 mm Hg, 
16.9OC 

Fibre 5 
I = 1.33cm; d-0.0043cm. 
Eddy frequency with R > 300 

749 mm Hg, 
16.9' C 

(formula given by Roshko (1954)) 

77.8 
91.0 

121-5 
155 
174 
208 
237 
257 
49.2 
67.0 
75.3 

116 

165 
243 
324 
342 
391 
449 
539 
646 
766 

0.0062 
0.0086 
0.0134 
0.0138 
0.0162 
0.0214 
0.0214 
0.0244 

0.0188 
0.0184 
0.0276 
0.0360 
0.0368 
0.0398 
0.0464 
0*0610 
0-0554 
0.0660 
0.0712 
0.0764 
0.0878 
0.0962 
0.1062 

0.0228 
0.0276 
0.0418 
0.0680 
0.0706 
0~0900 
0.1088 
0.1270 
0-0130 
0.0190 
0.0216 
0-0390 

0.0102 
0.0180 
0-0270 
0.0298 
0.0344 
0.0422 
0.0566 
0.0734 
0.0922 

31.4 1-58 
38.5 1.46 
46.6 1.56 
49.0 1.45 
52.8 1.46 
60.6 1-47 
61.9 1.41 
64.6 1-47 

44.9 1.46 
45.7 1.38 
55.8 1.39 
64.0 1.34 
64.6 1.34 
68.9 1.31 
76.8 1.27 
77.8 1.32 
82.8 1.26 
90.5 1-26 
94.7 1.24 
97.3 1.26 

106 1.24 
110 1.24 
116 1.24 

'Fitted' values - 
2.44 
2.86 
3-82 
4.86 
6.51 
6.52 
7.46 
8.09 
1.54 
2.09 
2.36 
3.61 

4.81 
7-10 
9-44 
9.95 

11-4 
13.1 
15-7 
18.8 
22-0 

6.47 
5.77 
4.91 
4.20 
3.99 
3.62 
3-37 
3.33 
9.38 
7.40 
6.67 
5.08 

4.46 
3.61 
3-06 
3.07 
2.67 
2-51 
2.30 
2.09 
1.91 

TABLE 1 (cont.) 
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as slowly aa 30 cm sec-l, so that other methods had to be developed for the lower 
speed runs. That first adopted was the measurement of the frequency of vortices 
in the street behind a second (thicker) cylinder (Roshko 1954). It was during 
this work that the frequency discontinuity that is to be described in Part I1 
waa discovered and the experimental methods will be recounted in more detail 
there. As a result of the existence of this discontinuity the formula given by 
Roshko for the velocity producing an observed frequency is less reliable than 
previously thought. Hence, some of the quartz fibres were also calibrated by 
tracing heat pulses down the wind-tunnel. The pulses were produced by a 50 c/s 
alternating current (giving 100 c/s temperature variations) in a 25 p diameter 
wire stretched across the tunnel. The voltage supply to this was put across the 
X-plates of an oscilloscope, on the Y-plates of which was the amplified output 
of a hot-wire detector in the heat-wake. The velocity could then be measured by 
observing the variations in the resulting Lissajous figure as the detector was 
moved down the tunnel. At very low speeds the temperature variations are 
destroyed by diffusion too quickly for this technique to work. It was, therefore, 
necessary to use the eddy frequency method incorporating a correction, obtained 
from the results of the other runs, for the deviations from Roshko’s result. This 
‘mixing’ of velocity measuring method undoubtedly resulted in a small loss of 
accuracy. 

The results are presented in table 1 and plotted on a log-log scale in figure 1. 
For two of the fibres the points are termed ‘fitted’; this means that full measure- 
ments of the fibre diameter and Young’s modulus were not made, but the results 
were adjusted to fit in with those of other fibres. Fibres were sometimes broken 
during the diameter measurements which could then not be completed. Since the 
U vs h measurements give the slope of the log R vs log C, curve, independently 
of the constants of the fibre, the adjustment consisted of moving all the points 
for one fibre without changing their relative position. 

The overall accuracy of the figures given for the drag coefficient is estimated 
at  around 6 yo. The internal accuracy of the points for a single fibre is, however, 
much better and is estimated a t  around 2 %. 

Figure 2 compares the results for the drag coefficient with those of Relf (1913) 
and of Wieselsberger (1921).* (The former made direct measurements of the 
force on a frame of wires; the latter observed the deflexion of a weight suspended 
on a wire in the air-stream.) The agreement is good at the centre of the range of 
overlap. Probably the lowest R points of the other workers were stretching their 
techniques a little beyond their limits. The disagreement of about 10 % around 
R = 100 is more puzzling. Four comments may be made about my results 
in this region of R:  

(i) The length-diameter ratio tends to be lower for the fibres used at the 
higher Reynolds numbers, which might slightly accentuate the decrease in C,. 

(ii) A similar effect might arise for the points of each individual fibre, from 
the fact that at  the higher speeds it is more bent and so less exactly perpendicular 
to the flow. 

* Though Wieselsberger describes his experiments in this paper, his actual figures are 
given in Prandtl (1923). 
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(iii) There was a rather large scatter in the diameter measurements of fibre 8 
which was probably due to variations along its length (of maybe 2 %). 

(iv) It is possible that there was some interaction between fibre 8 and the 
vortex street behind it. The street frequency was typically around the fifth 
fibre resonance, which is a sufficiently high order for it not to be easily stimulated. 
However, the possession of resonant frequencies by the fibre could lead to a modi- 
fication of the street frequency and so of the drag. For a few of the points the 
fibre was vibrating slightly (though this is thought to be due to resonance of 
the wind-tunnel motor), but there is good agreement between these and points 
for which the fibre appeared quite stationary. 

2.4 0.6 0.8 1.0 1.2 1.4 1.6 1-8 2.0 2.2 

log,, R 
FIQTJRE 2. Comparison with other experimental measurements of the drag coefficient. 

x , Relf; 0, Wieseleberger; -, Tritton. 

Points such as these were taken into account in the above estimate of 6 yo 
accuracy, but they do perhaps suggest that the error may be rather larger at  
the high R end of the curve. It seems unlikely, however, that this is sufficient 
to fully explain the difference from Relf and Wieselsberger, and I think that, 
despite their good mutual agreement, their measurements must be on the 
high side. Since neither author gives any discussion of systematic errors, it is 
difficult to tell how likely this is. 

Figure 3 compares the present experimental results with the various theo- 
retical calculations : 

(i) The low Reynolds number solution of the Oseen equation, due to Lamb 

(ii) Both Bairstow, Cave & Lang (1923) and Tomotika & Aoi (1960) have 
extended the solution of the Oseen equation to higher Reynolds number. Their 
results for the drag coefficient are in close agreement and are given as a single 
line in figure 3. This approach to the problem has been criticized by Proudman 6 
Pearson (1957) on the grounds that the approximation involved in Lamb’s 
solution is no worse than that already involved in the Oseen equation. 

(iii) Southwell & Squire (1934) give a solution for Reynolds number 2, by a 
method similar to Oseen’s, but supposing the convection to be conditioned by the 
irrotational velocities instead of the undisturbed velocity. 

(1911). 
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(iv) Kaplun (1957) gives a solution obtained by matching an Oseen solution 
far from the cylinder with a Stokes solution close to it. The effect is to give a 
third term in the low Reynolds number expansion, of which Lamb's solution 
gives the first two. 

(v) Relaxational solutions of the Navier-Stokes equations: at R = 1 and 10 
due to Allen & Southwell (1955); a rough solution at  R = 10 (Thom 1929) and 
a detailed one at R = 20 (Thom 1933); and at  R = 40 by Kawaguti (1953) and 
Apelt (1959), independently. 

181 I 

o - ' _ l ' l l l l l t l ' l l ' l l l l l l t l l l l l l  

log,, R 
1 1.2 i.4 7 6 i 8 o 0.2 0.4 0.6 0 8  1.0 1.2 1-4 1.6 1-8 

FIGURE 3. Comparison of the experimental curve with the various theoretical evaluations 
of the drag coefficient. -, Experimental (Tritton); ---, Lamb; ----, Bairstow, Cave & 
Lang; also Tomotika & Aoi; - - - -, Kaplun; + , Southwell & Squire; x , Allen & Southwell; 
0, Thom; Y, Kawaguti; 0, Apelt. 

The experimental points fit in satisfactorily with the overall picture given by 
these various theories. There is good agreement with the relaxation calculations 
particularly with Thorn's at  R = 20 and Kawaguti's a t  R = 40, which are thought 
to be particularly reliable calculations. At low Reynolds numbers, the experi- 
mental curve does not join on quite smoothly to the common curve of the 
theories, but the disagreement is within the limits of experimental error and 
there can be little doubt that the two curves should coincide for R less than 
about 0.6. The agreement with Kaplun's solution at rather higher Reynolds 
numbers than theothers is satisfactory since this is a higher-order approximation. 

The Reynolds number range covered by the present measurements includes 
the first appearance both of attached eddies and of the vortex street; the 
results should thus show what effects these changes have on the drag coefficient. 
Since the relative accuracy of points obtained from the same fibre is greater than 
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those from different fibres, the individual U us h curves of the various fibres have 
been inspected. These show that there is no sharp discontinuity in the drag in 
either of the ranges 3 < R < 6 and 30 < R < 45. There is, however, some in- 
dication of a discontinuity around R = 80; this is presumably related to the 
phenomenon described in Part I1 and will be discussed there. 

PART 11. A TRANSITION IN FLOW PAST A CYLINDER AT 23 N 90 

1. The discontinuity in frequency and amplitude 

Strouhal number X (non-dimensional eddy frequency) as 
Roshko (1954) gives the relationship between the Reynolds number and the 

in the range 50 < R < 150. (Here n is the frequency in the vortex street as given 
by a detector fixed relative to the cylinder.) In  this range the street just dies out 
slowly as it is traced downstream; there is no turbulence. 

Whilst I was using this result for measuring velocities (as described in Part I), 
it became apparent that it is not quite correct; there is a small discontinuity 
in the velocity-frequency curve. This is shown in figure 4, where frequency 
is plotted against velocity for three runs. The frequency was measured by 
putting the amplified output of a hot-wire anemometer placed in the wake onto 
the Y-plates of an oscilloscope and adjusting the frequency of an electronic 
oscillator on X-plates until a Lissajous figure was obtained. The velocity was 
obtained by recalibrating the quartz-fibre as described in Part I. 

In  each diagram of figure 4 the points fall on two separate lines; the transition 
between the two involves a sudden decrease of around 5 yo in frequency as the 
velocity is increased. The broken line on each plot is the velocity-frequency 
dependence given by Roshko’s formula. This does not come in just the same 
position relative to the points each time. The reason is that the internal accuracy 
of a single run is again markedly better than its absolute accuracy; if all the 
runs were shown on a single Reynolds number us Strouhal number plot, the dis- 
continuity would probably not be apparent. This is, incidentally, probably why 
it has not been noticed by other workers. 

As a result of a detailed consideration of the runs shown in figure 4 together 
with a number of similar runs, it is suggested that Roshko’s formula be replaced 
by two sections of the form XR = a + bR + C ~ ~ ,  

with a, b and c taking the following values: 

a b c 

80 < R < 150 - 6.7 f 0.2 0.224 f 0.006 0 

50 < R < 105 - 2.1 0.3 0.144 f 0.010 0*00041 f 0*00010 

(1.1 < 0.00025) 

The errors are a combination of standard errors of the mean and small esti- 
mated systematic ones. Those on a, b and c may be regarded as indicating how well 
the equation gives, respectively, the position, slope, and curvature of the varia- 
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tion. The uncertainty in a is thus the principal guide to how well the formulae 
determine the Strouhal number for a given Reynolds number. The errors on the 
two limbs are, of course, interdependent; the frequency difference between the 
two modes in the transition region may be given as 

A(SR) = 0.7 0.1. 

The equation for the low-speed mode is likely to be biased in favour of the upper 
end of the range, since in many runs the speed at R - 50 was too low to be mea- 
sured by tracing heat pulses. 

At a speed in the range 80 < R < 105, the frequency is likely to be found on 
one of the two lines rather than between them. The behaviour of the flow in this 
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FIUUFCE 4. Three velocity-frequency plots showing the discontinuity. (a) Cylinder of dia- 
meter 0.178cm, producing a long overlap between modes. ( b )  Same cylinder remounted, 
producing a sharp transition between modes, both frequencies being measurable at 
U N 90 cmlsec. (c) Cylinder of diameter 0.203 em, with one point of intermediate frequency 
in transition region. The broken line in each plot is given by Roshko's formula. 

transition region will be described more fully shortly, but, in connexion with the 
Reynolds number ranges for the two modes, it should be noted that when the 
low-speed mode occurred with R > 95, it almost always had irregularities. At 
lower speeds than this, irregularities could occur but did not necessarily do so. 
All the above conclusions are based on wind-tunnel experiments. Water- 

channel investigations sometimes showed the transition beginning at speeds as 
low as R = 70. 

Associated with the sudden decrease in frequency is a decrease in the intensity 
of the velocity fluctuations. (This probably means that the vortices are weaker, 
but could bedue to the same amount of vorticity being more diffusely distributed.) 
This is shown in figure 5. At each speed a constant-current hot-wire anemometer 
14.2 diameters downstream of the cylinder was traversed at  right angles to the 
wake until the amplitude of its output was a maximum. This amplitude was then 
measured in arbitrary units (the scale on an oscilloscope screen) and plotted as 
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the ordinates of figure 5.* There is considerable scatter at the lowest speeds; 
apart from this, the graph shows an upward trend of amplitude with increasing 
speed on either side of a sharp drop. Simultaneous frequency measurements 
(figure 46) showed that the flow changed from the low-speed mode to the high 
at the sharp drop; there was some unsteadiness in the frequency at 83.7 and 
88.0 cm sec-l, and at 90.1 cm sec-l both frequencies were present, though it 
was possible to measure the amplitude of only the low-speed mode. That of the 
high-speed mode was clearly smaller. 
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2. Experimental arrangements 
An investigation was carried out in the range of speeds between the two modes, 

where a more complex behaviour than either occurs. It shows a number of 
interesting features and, by indicating how each mode behaves when affected by 
the other, throws some light on the difference between the two. The observations 

* Since the current through the hot-wire waa held constant throughout the observations, 
the relationship between the velocity fluctuations and the observed amplitude depends in a 
complex way on the mean velocity (which is in any case an unknown quantity) a t  the position 
of the maximum. Only the discontinuity is significmt in figure 5, not the form of the varia- 
tion on either side of it. The constant-current method was chosen for experimental simplicity. 
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to be described suggest that the low-speed mode arises from an instability of the 
wake, whereas in the high-speed mode the vortex street is directly affected by the 
walls of the cylinder. The two modes have themselves been examined, as well as 
the transition between them, and some of the experiments show their contrasting 
features. 

Experiments were carried out in both the wind-tunnel and a water-channel. 
The flow in the former was studied by making photo-traces of hQt-wire outputs 
(with a drum-camera photographing an oscilloscope). The hot-wire probes 
used were of Wollaston wire with long unetched portions. This allowed the support 
to be outside the wake where it does not affect the street; it has been noted (see, 
for example, Kovasznay 1949) that distortion can be produced by having the 
support directly downstream of the wire, and I found that such an arrange- 
ment could even produce a change in the frequency when the wire was close to 
the cylinder. When only one wire was placed in the wake a time-scale could also 
be put on the photo-trace, but in a number of experiments both oscilloscope beams 
were used to  indicate hot-wire outputs so that correlations between different 
positions in the wake could be studied. 

The results could not be fully interpreted without visualization of the flow; 
the water-channel experiments, which I did not attempt to make quantitative, 
served this purpose. The channel used is open-topped, the water having 
a free surface. It enters through a ‘honeycomb’ which is followed by a short 
contraction before the working section. This does not give entirely uniform flow, 
but a cylinder of about 0.3cm diameter placed vertically at the centre of the 
channel was clear of the velocity variations. The depth was about 14 cm, giving 
a length of about 30 diameters in which there were no wall or surface effects. 
The working section extended for about 20cm beyond the cylinder before the 
flow was affected by the weir at the downstream end. Dye (potassium per- 
manganate solution) was put into the flow through a small hole in the back of the 
cylinder producing the wake; this arrangement is better than putting the dye 
in upstream as it concentrates it close to the centre of rotation of each vortex and 
so gives a good picture of the motion of the vortices. (The dye comes away from 
the cylinder at the two separation points and thus gets into the regions of high 
vorticity.) This technique does not, of course, give any indication of three- 
dimensional effects. These were studied by using a cylinder coated with metallic 
tellurium; making this the cathode of an electrolytic cell (6 to 9 V  between the 
cylinder and the walls of the channel proved satisfactory) produces marker all 
along the cylinder. The arrangement was similar to that in the dye experiments; 
because of the need to have the cylinder vertical, the vortex lines had to be 
viewed and photographed through a mirror. 

In  the water experiments, the approximate Reynolds number was determined 
from the eddy frequency. 

3. Observations of the subcritical, critical and supercritical flows 
Figure 6 (plate 1) shows the subcritical, critical, and supercritical flows (the term 

‘critical’ being applied to the R IV 90 transition). Photos 6a and e are of the low- 
and high-speed modes; both exhibit quite regular vortex streets. There is some 
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suggestion that in the high-speed mode the dye is less diffusely distributed, but 
this may be due to the fact that the same amount of dye was going into a 
faster flow. During the course of the experiment, I was unable to tell whether 
the flow was sub- or supercritical by looking at the vortices. A difference was 
apparent, however, when dye was put into the attached eddies (this was easily 
done by allowing the potassium permanganate to come out of the hole as a jet 
for a short while). Then in the low-speed mode the dye remained in the attached 
eddies (though there were oscillations of the vortex street frequency in this 
region), whilst in the high-speed mode it was removed by the fluctuations in a 
few cycles. 

Photos 6 b, c and d illustrate the critical flow. Irregularities of the type shown 
in 6 b  and d are a com.mon feature of this flow. The pictures do not show a steady 
state. The irregularity first appears only a few diameters behind the cylinder 
(though only if dye is injected into the attached eddies can it be seen to affect 
these) and produces strongest lining-up (small or zero lateral separation of the 
vortices associated with increased longitudinal separation) at typically 20 
diameters. The irregularity then travels further downstream with some reduc- 
tion in the lining-up. The eddies upstream of this sometimes increase their 
lateral separation up to about 3/2 its normal value; this does not occur, however 
until typically 30 diameters behind the cylinder when the main part of the 
irregularity is still farther downstream. Photo 6 c  shows the same flow as 6 b  
but between irregularities; one irregularity has just gone out of the picture 
downstream and another is just forming close to the cylinder. 

Figure 7 (plate 2) shows the development of the irregularities as revealed by the 
wind-tunnel photo-traces. Even when the vortices have been largely dissipated 
by viscosity, the irregularities persist, thus producing some weak long time-scale 
turbulence. 

Dye injected into the attached eddies in the transition flow stayed for some 
while and was then all removed very quickly. This could be regarded as the start 
of an irregularity. The dye removed in this manner went into the street a few 
eddies downstream of the ones that showed maximum lining-up. 

The water-channel observations gave some indication that the irregularities 
travel upstream relative to the vortices. This is confirmed by wind-tunnel experi- 
ments with two hot-wires at different distances downstream (and separated 
slightly parallel to the cylinder so that one was not in the wake of the other); 
figure 8 (plate 2) shows a trace so produced. On average the irregularities had 
a velocity of about 0.5 U relative to the cylinder, though it varied considerably, 
occasionally going as low as 0.3U and occasionally being very little less than U .  
There is some disagreement as to how fast the vortices themselves move-to 
take extreme examples, Tyler (1931) observed velocities mostly between 0.7 U and 
0*8U, whilst Kovasznay’s (1949) results imply a velocity of about 0.98U-but it 
is certainly faster than the irregularities. 

Some two-wire experiments were also carried out with the separation in the 
y-direction. They showed, as the water-channel observations would lead one to 
expect, complete correlation of the irregularities across the wake. 

It should be stressed that the behaviour being described here occurs not only 
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FIGURE 6. Water-charinel photographs of the vortex streets (the cylinder is seen in perspec- 
tive). (a )  R = 60; low-speed mode. ( b )  R = 75; one of a sequence of randomly spaced irregu- 
larities. (c) R = 75; between irregularities. ( d )  R = 79; one of a periodic sequence of 
irregularities. ( e )  R = 89; high-speed mode. 
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In all the photo-traces, time goes from left to right and, except where ot'herwise stated, 
the top corresponds to maximum velocity. 

FIGURE 7. Photo-traces showing the development of randomly spaced irregularities as they 
travel downstream behind a cylinder of 0-178 cm diameter. The short lines on each trace 
mark O.lsec intervals. ( u )  R = 102; r / d  - 1.5; y /d  = 1.0. ( b )  R = 101; x/d = 28.5; 

FIGURE 8. Simultaneous traces a t  different distances downstream behind a cylinder of 
diameter 0.178cm, showing randomly spaced irregularities a t  R = 105. Upper trace- 
xl/d = 1.5; yJd = 0.7. Lower trace-x,/d = 15.7; y,/d = 1.0 (the bottom corresponds to the 
maximum velocity). The separation of the irregularities on the two traces indicates the 
speed at which they travel downstream. 

FIGURE 9. Photo-traces showing ( a )  randomly spaced irregularities and ( b )  periodically 
spaces ones, off-centre and a t  the centre of the wake. ( a )  R = 98; xJd = x,,id = 1.5; 
y,/d = 2.5; yz/d = 0. ( b )  €2 = 101; x, /d  = x2/d = 14.2; yl/d = 2.7; yz/d = 0. Note that in 
the two traces a t  the centre of the wake, the bottom corresponds to the maximum velocity. 

FIGURE 10. Photo-trace showing intermittent jumps between the two modes. The two parts 
join stzaight onto one another. R = 107; x /d  = 15.7; yld = 1.0. 

FIGURE 11. Photo-trace showing repetition of a complex patt.ern in the irregularities. 
The sequence of a large amplitude diminution followed after 10 wavelengths by a smaller 
one, then after another 11 wavelengths by an even smaller one, and then after 13 wavelengths 
by a large one, is repeated five times over. R = 106; x/d N 1.5; y / d  = 1-1. 

y / d  = 1.8. (c) R = 104; .-id = 57; y/d - 2.5. ( d )  R = 102; .r/d = 104; y,!d - 4. 
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FIGURE 12. Tellurium experiments showing behaviour of the vortices parallel to the 
cylinder. ( a )  The occurrence of irregularities; R = 78. ( b )  High-speed mode, showing 
tendency for vortex lines t o  become wavy; R = 88. 

TRITTON 
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when the flow changes from one mode to the other as a result of a speed change, 
but also as a repeated phenomenon when the Reynolds number is held in the 
short critical range between the two modes. A sequence of irregularities, usually 
similar to one another, with steady vortex streets between them, is then to be 
observed. The spacing can be either random or periodic. The flows shown in 
photos 6 b and d differ in that in the former the irregularities were not evenly 
spaced, whereas in the latter they always had approximately 14 wavelengths 
between them. Figure 9 (plate 2 )  makes the same contrast for the wind-tunnel 
observations; photos 9a and b show the traces produced by a pair of hot-wires 
at the centre and a little off the centre of the wake for, respectively, random and 
periodic irregularities. Traces with a time-scale suggest that when the irregular- 
ities are randomly spaced the carrier frequency is that of the low-speed mode, 
and when they are periodic it is that of the high. In  the latter case, considerable 
variation of the periodicity has been observed; the limits are about 6 and 14 
wavelengths between consecutive irregularities. The frequency thus averages 
about twice the beat frequency of the two modes. I have not managed to relate 
the variations to any other feature of the flow. 

The photo-traces revealed a wider variety of behaviour than the water-channel 
observations. Sometimes the amplitude modulation of a single carrier-frequency 
as described above did not occur at all; the transition region was then marked 
by a flow that would make sudden jumps from one mode to the other. These 
usually occurred too often for the frequencies between them to be measured on 
the photo-traces, but the modes could be identified by their different amplitudes 
(as in figure 10 (plate 2 ) ) ;  also the presence of the two frequencies could be de- 
tected by Lissajous figure observations on an oscilloscope. When this behaviour 
occurred the transition range was short, covering typically a difference of about 
4 in Reynolds number (though there was considerable variation from one run to 
another of the position of this range). 

More usually the transition flow occurred over a larger Reynolds number 
range of extent up to 10. The photo-traces then showed the more complex be- 
haviour already discussed. Increasing the speed in small stages through the 
transition region could then produce in turn the low-speed mode modulated by 
random irregularities and the high-speed mode modulated by periodic ones. The 
former occasionally showed a striking repetition of a complex pattern in the 
irregularities, as illustrated by figure 11 (plate 2). This sort of odd behaviour is 
characteristic of the flow when it is in the low-speed mode at a speed at which it 
is normally in the high. 

The photo-traces of figure 9 both show that at the centre of the wake the 
irregularities produce not only an amplitude modulation but also some variation 
in the mean velocity. This contrasts with the behaviour sufficiently far from the 
centre for the first harmonic to dominate; here the irregularities produce only 
amplitude modulation (together, of course, with the change in the spacing of 
the peaks corresponding to the increase in longitudinal spacing of the vortices). 
When the irregularities are periodic the mean velocity variation is almost 
sinusoidal. When they are random there is a peak shortly after each minimum 
in the amplitude (which is regarded as the main part of the irregularity); the 
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mean velocity does not change during the diminution. It thus appears that the 
irregularities have a flow into them from behind, a feature not apparent from 
the water-channel visualization. An alternative way of looking at this is to say 
that after the passage of an irregularity the flow is in a mode with a slightly dif- 
ferent velocity profile at the centre of the wake from before and during its passage. 

It is difficult to give a full interpretation of the photo-traces in terms of the 
observed motion of the vortex centres, as it is not clear how diffusely the vor- 
ticity is distributed; there is considerable difference between the velocity field of 
an ideal Karman street and one plotted out from experimental data (see, for 
example, Kovasznay (1949)). However, it seems satisfactory to associate the 
type of motion usually observed in the water-channel with the more complex 
of the transition features observed in the wind-tunnel. A different behaviour that 
also occurred in the water experiment, but only rarely, may then be associated 
with the sudden jumps between the modes. This different behaviour showed 
short transitions between the normal flow and a flow in which the eddies were 
very diffuse close to the cylinder, and in which some of the dye went into an 
amplified sinusoidal motion down the centre of the wake. This change did, of 
course, produce irregularities but they did not show the characteristics of the 
usual ones. 

Presumably the exact behaviour in the transition region that occurs on any 
particular occasion is governed by small unobserved deviations from the 
theoretical arrangement. If the cylinder was slightly bent, a fairly complex 
motion always occurred. On the other hand, it was not always possible to produce 
a simple behaviour by taking care to make the cylinder straight. 

The water-channel experiments on three-dimensional effects show that the 
irregularities are localized in the z-direction (parallel to the cylinder). This is 
shown in figure 12 u (plate 3) in which one irregularity is just appearing close to the 
cylinder and another, at a different z, has travelled some distance downstream. 
An irregularity affects the flow for a diatance of about six or eight diameters in 
the z-direction; outside this the vortex lines continue as normal. 

The three-dimensional visualization was also examined to see whether it 
revealed any differences between the low- and high-speed modes. The differences 
are not so striking that they immediately revealed which mode the flow 
was in. There is, however, a general tendency for the vortex lines (identifying 
these with the observed lines of marker) to be straighter in the low-speed 
mode. This does not necessarily imply that the vortex lines are parallel to the 
cylinder in this mode; it requires only that the phase variation of the eddy 
production is proportional to z. In  both modes angles of up to 30" or so between 
the vortex lines and the cylinder have been observed. However, vortex lines 
parallel or nearly parallel (at say < loo) to the cylinder are more common in the 
low-speed mode than in the high. This tendency for the phase to be the same at 
different z for R < about 90 but not for R > 90 has already been noted by Phillips 
(1956). In  the high-speed mode any kinks in the vortex lines produced by the 
initial conditions are able to persist. Also, with increasing R there is a stronger 
tendency for bends to develop spontaneously (as illustrated by figure 12b); 
this is a trend towards the transition occurring at  R N 150, when a three- 
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dimensional instability sets in producing both bends in the vortex lines and 
irregular motions of the vortices in the two-dimensional visualization. 

The effect of a slight bend in the cylinder was investigated. The tendency for 
the bend to be reflected by a kink in the vortex lines is more marked in the high- 
speed mode than in the low. 

The difference between the two modes was investigated with one further 
arrangement. The cylinder emitting dye through a small hole was used again, 
but with the hole at 90" to the front stagnation point. This was intended primarily 
to test the suggestion that the high-speed mode differs from the low in not 
possessing attached eddies; there would then be a single rear stagnation point of 
oscillating position. This is not the case, since the dye all left the cylinder wall 
at a single point some way in front of the rear generator in both modes; there were 
no oscillations of this point and no dye was carried across to the corresponding 
point on the other side. However, this arrangement did reveal a difference 
between the two modes further downstream. In the high-speed mode, the dye 
leaving the cylinder on one side of the wake went only into the vortices on that 
side. In  the low-speed mode, on the other hand, there was a transfer of dye 
across the centre of the wake and it went almost equally into the two sides of 
the vortex street, though it was more diffusely distributed on the far side. It was 
thus clear that there was further development of the street downstream of the 
oscillating attached eddies, the street eddies being linked by an amplified 
sinusoid of dye. This feature was not shown by the high-speed mode. 

With the hole between one of the separation points and the rear generator, 
most of the dye left the cylinder at the separation point on that side. A small 
amount was, however, transferred across to the other one, presumably by 
diffusion in the low-speed mode (dye can then accumulate in the attached eddies) 
and by the oscillations in the high-speed mode. 

4. Effect of the transition on drag 
The results of the experiments described in Part I have been examined to see 

whether the R N 90 transition affects the drag. As stated there, the U ws h curve 
for an individual fibre is more likely to reveal a change than the overall R ws C, 
curve. The Uwsh curve covering this Reynolds number is shown in figure 13. 
A glance along the points suggests that there might be a discontinuity in slope 
between U = 1000 and 1100 cm sec-l, which correspond respectively to R = 76.5 
and 84.0. Since, however, the evidence for the discontinuity is not wholly con- 
vincing, the points have been analysed statistically, by making least squares 
fits of the points on either side of the suspected discontinuity to  quadratics,* 
and comparing the differences in the coefficients with their standard errors. No 
significant discontinuity in slope was indicated, but the results did indicate a 
discontinuity, significant at  the 5 % level, in the actual value of h. The change 
was upwards with increasing U .  This suggests that the transition does have 
some effect on the drag, but it is not evident just what. The point at U = 1016 

* The origin, which is, of course, necessarily a point, was not included, as it would 
clearly have strongly influenced the fit and the logarithmic nature of the low Reynolds 
number solutions indicates that it would not fit in with any quadratic approximation. 
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cm sec-l, which has a particularly high h, is obviously strongly influencing the 
result, and it may be that this point is in the transition region and should not 
be included in either fit (the analysis indicating the discontinuity includes it in 
the high velocity one). Clearly, further experiments are required, and the author 
hopes to be able to do these in due course. 
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FIGURE 13. Velocity-deflexion curve for fibre 8. 

5. Discussion 
The most satisfactory explanation of the R w 90 transition seems to be the 

following. The first appearance of the vortex street at R - 40 is the result of an 
instability of the wake; the only role of the cylinder is to produce the velocity 
profile. The reason that the instability gives rise to a per~isting periodic motion 
rather than turbulence is probably that the Reynolds number (based on the wake 
itself-not the cylinder producing it) is independent of the distance downstream; 
this contrasts with a two-dimensional jet in which the Reynolds number in- 
creases with x. For the same reason, it is to be expected that the beginning of 
instability will be close to the cylinder. 
As the speed is increased, the development from this first appearance to a full 

vortex street is compressed more and more into a region just behind the cylinder 
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until the formation of the street is directly affected by its walls. The attached 
eddies might also have an effect, but since the velocity profiles in this region are 
similar to those further downstream except for their crossing the zero line 
(Kovasznay 1949; Kawaguti 1953) this is unlikely. 

In  the transition region the effect of the walls is only partial, but, when the 
flow is in the high-speed mode the origin of the vortex street is in the immediate 
vicinity of the cylinder. It no longer grows from an instability of a given velocity 
profle, so that the factors governing its parameters (frequency, spacing of 
eddies, etc.) are different. Frequency and amplitude discontinuities at the 
transition are thus plausible. 

On either side of the critical Reynolds number, there are oscillations with the 
vortex street frequency of the attached eddies. The distinction is that, in the 
low-speed mode, these oscillations are produced by the beginnings of an in- 
stability which develops further as it goes downstream, whereas, in the high, 
a fully developed vortex street exists right from its start close to the cylinder. 
In  the low-speed mode the same fluid remains in the attached eddies throughout, 
whilst in the high the fluid there is continually moving into the vortex street; 
only then is the common way of speaking of the vortex street being produced by 
shedding of the attached eddies strictly correct. 

These conclusions imply that attempts to provide a theoretical derivation of 
the parameters of the vortex street must be differently based for the two modes. 
The well-known treatment by von K&rm&n (see Lamb 1932, $156) of an infinite 
double row of equal point vortices provides primarily an explanation of why the 
street, once formed, should be stable; the reasons for the formation with a spacing- 
ratio fairly close to the theoretical stability requirement must lie in the mech- 
anism of the formation. For the low-speed mode a stability theory of the wake 
seems likely to be appropriate. Hollingdale (1940) has developed such a theory 
for a parallel wake with R + 00 and attempted a comparison with experiments 
on wakes of flat plates at zero incidence and aerofoils. The comparison is difficult 
because of changes in the wake with distance downstream and this difficulty is 
likely to be even more marked for the cylinder. However, the partial success of 
Hollingdale’s comparison, together with Taneda’s (1958) observation that the 
wakes of plates and cylinders behave similarly, once they are clear of the direct 
influence of the walls, does suggest that an instability of the wake could give the 
observed value of the longitudinal spacing. For the high-speed mode, on the 
other hand, the above interpretation suggests that the eddy frequency is 
governed by the oscillations in the immediate vicinity of the cylinder; this, 
together with the speed with which the eddies travel downstream, then deter- 
mines the longitudinal spacing. Birkhoff’s (1953) rough derivation of the 
Strouhal number by considering the wake swinging from side to side as a solid 
simple harmonic oscillator might apply here, though it should be remembered 
that the attached eddies now consist of continually changing fluid. 

There is one quantity that can be crudely estimated for either of these ideas 
about the origin of the street, namely the lateral spacing. Eddies produced by 
a wake instability are likely to have their centres close to the points of inflexion 
in the velocity profile (more specifically, the laminar profile at the origin of the 
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instability); the experimental profiles given by Kovasznay (1949) indicate that 
these are between 0.9 and 1-5 diameters from the centre line. On the other hand, 
eddies produced close to the cylinder are likely to be at about the same y as the 
maximum vorticity there; Kawaguti's (1 953) numerical solution suggests that 
this is in the range 04-0-8 diameters. Observed lateral separations in the two 
modes (as in photos 6a, e ,  and other similar ones) are consistent with these inter- 
pretations; so too are wind-tunnel observations of the position of maximum 
amplitude (though it is not clear just how this position is related to the centre of 
rotation). In  each mode, however, there is a continuous decrease of lateral 
separation with increasing Reynolds number, so that the observations may not 
be specifically a feature of the two modes; there was too much scatter for any 
discontinuity in the lateral separation at the transition to be detected. 

Although there is no direct evidence on this point, the data seem to require a 
discontinuity in the longitudinal separation. For a von K&rm$n ideal vortex 
street the frequency is related to the longitudinal and lateral spacings S1 and s2, 
the strength of each vortex K,  and the free stream velocity U by 

It is known that n decreases at the transition, and the indications are that K 

and s2 both decrease. Since the second term is always small compared with the 
first, s1 must increase. This contrasts with its general trend, which, like that of s2, 
is downwards with increasing Reynolds number. 

This change in longitudinal spacing is thought to be the root of the behaviour 
of the transition flow. If the speed is such that the high-speed mode is just 
beginning to produce vortices but their motion downstream is governed by the 
wake instability, then they will take up a longitudinal spacing that is too small 
for the rate at which they are being produced. This can continue only for a short 
while; there will then be a compensating region of increased longitudinal spacing, 
which could well produce the sort of irregularity shown in figures 6 b and d. In  
all the photographs, such as these two, the vortices in an irregularity line up 
with those downstream of it more smoothly than with those upstream. This 
suggests that the street is forced into the large spacing of an irregularity by the 
rate at which vortices are formed, and then breaks off and starts anew in the 
mode with the small spacing. 

Since, when the irregularities are randomly spaced, the carrier frequency is 
the low-speed mode, the flow is then presumably only intermittently inclined to 
produce vortices at the supercritical frequency. At slightly higher speeds they 
are continuously produced at  this frequency, but still pulled into the subcritical 
spacing; the irregularities are then periodic. It is plausible that, in these circum- 
stances, each one should take about the same time to develop, but attempts to 
produce a full theory of the periodicity have been unsuccessful. 

The above remarks have, for the sake of simplicity, treated the behaviour as 
two-dimensional. It should be remembered that, in fact, the irregularities are 
localized in the third dimension. The return to regular street after an irregularity 
is probably brought about by the undistorted vortex lines on either side. 
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An alternative interpretation of the transition as the first onset of three- 
dimensional instability has been rejected, because it seems unlikely that this 
would produce supercritical streets as regular as the subcritical ones (compare 
photos 6 a  and e ) .  The three-dimensional differences between the two modes, 
described earlier, are thought to be due to the high-speed mode being more 
directly affected by conditions at the cylinder than the low. The behaviour at 
R - 150 suggests that the beginning of three-dimensionalinstability occurs there. 
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